A TM M computes f:Nk→N if for any M(bin(n1),…bin(nk))=bin(f(n1…nk))
plus2(n) = succ(succ(n))
plus(n,0)=m, g(m)=id1,1(m) plus(m,n+1)=succ(plus(m,n))=succ(id3,3(m,n,plus(m,n)))=h(m,n,plus(m,n))
mult(m, 0) = zero(m) mult(m, n + 1) = plus(m, mult(m, n))
sgn(n)={1n>00n=0
with recursive definition sgn(0) = g = 0 // g is constant function sgn(n+1) = h(n, sgn(n)) = 1 // h(n, sgn(n)) is constant function
如果 f, g 和 h 都是原始递归函数,而 p 是原始递归谓词,并且所有这四者都是 k 元的,那么